On leapfrogs, crashing satellites, and going nuts: A very first conceptual introduction to Hamiltonian Monte Carlo

TensorFlow Probability, and its R wrapper tfprobability, provide Markov Chain Monte Carlo (MCMC) methods that were used in a number of recent posts on this blog. These posts were directed to users already comfortable with the method, and terminology, per se, which readers mainly interested in deep learning won’t necessarily be. Here we try to make up leeway, introducing Hamitonian Monte Carlo (HMC) as well as a few often-heard “buzzwords” accompanying it, always striving to keep in mind what it is all “for”.

Related Articles

PyMC Open Source Development

In this episode of Open Source Directions, we were joined by Thomas Wiecki once again who talked about the work being done with PyMC. PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

Julia Open Source Development

In this episode of Open Source Directions we were joined by Jeff Bezanson and Katie Hyatt who talk about the work they have been doing with Julia. Julia is a programming language that was designed from the beginning for high performance. It programs compile to native code for multiple platforms via LLVM. Julia is dynamically typed, feels like a scripting language, and has good support for interactive use.