Image segmentation with U-Net

In image segmentation, every pixel of an image is assigned a class. Depending on the application, classes could be different cell types; or the task could be binary, as in “cancer cell yes or no?”. Area of application notwithstanding, the established neural network architecture of choice is U-Net. In this post, we show how to preprocess data and train a U-Net model on the Kaggle Carvana image segmentation data.

Related Articles

Introduction to Autoencoders

Table of Contents Introduction to Autoencoders What Are Autoencoders? How Autoencoders Achieve High-Quality Reconstructions? Revisiting the Story Types of Autoencoder Vanilla Autoencoder Convolutional Autoencoder (CAE) Denoising Autoencoder Sparse Autoencoder Variational Autoencoder (VAE) Sequence-to-Sequence Autoencoder What Are the Applications of Autoencoders?…
The post Introduction to Autoencoders appeared first on PyImageSearch.