Gaussian Process Regression with tfprobability

Continuing our tour of applications of TensorFlow Probability (TFP), after Bayesian Neural Networks, Hamiltonian Monte Carlo and State Space Models, here we show an example of Gaussian Process Regression. In fact, what we see is a rather “normal” Keras network, defined and trained in pretty much the usual way, with TFP’s Variational Gaussian Process layer pulling off all the magic.

Related Articles

PyMC Open Source Development

In this episode of Open Source Directions, we were joined by Thomas Wiecki once again who talked about the work being done with PyMC. PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

What Is Keras Core?

Table of Contents What Is Keras Core? Configuring Your Development Environment Let’s Talk about Keras! Going Beyond with Keras Core The Power of Keras Core: Expanding Your Deep Learning Horizons Show Me Some Code JAX Harnessing model.fit() Imports and Setup…
The post What Is Keras Core? appeared first on PyImageSearch.