Time series prediction with FNN-LSTM

In a recent post, we showed how an LSTM autoencoder, regularized by false nearest neighbors (FNN) loss, can be used to reconstruct the attractor of a nonlinear, chaotic dynamical system. Here, we explore how that same technique assists in prediction. Matched up with a comparable, capacity-wise, “vanilla LSTM”, FNN-LSTM improves performance on a set of very different, real-world datasets, especially for the initial steps in a multi-step forecast.

Related Articles

Introduction to Autoencoders

Table of Contents Introduction to Autoencoders What Are Autoencoders? How Autoencoders Achieve High-Quality Reconstructions? Revisiting the Story Types of Autoencoder Vanilla Autoencoder Convolutional Autoencoder (CAE) Denoising Autoencoder Sparse Autoencoder Variational Autoencoder (VAE) Sequence-to-Sequence Autoencoder What Are the Applications of Autoencoders?…
The post Introduction to Autoencoders appeared first on PyImageSearch.

CycleGAN: Unpaired Image-to-Image Translation (Part 3)

Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 3) Configuring Your Development Environment Need Help Configuring Your Development Environment? Project Structure Implementing CycleGAN Training Implementing Training Callback Implementing Data Pipeline and Model Training Perform Image-to-Image Translation Summary Citation Information CycleGAN:…
The post CycleGAN: Unpaired Image-to-Image Translation (Part 3) appeared first on PyImageSearch.