Upside down, a cat’s still a cat: Evolving image recognition with Geometric Deep Learning

In this first in a series of posts on group-equivariant convolutional neural networks (GCNNs), meet the main actors — groups — and concepts (equivariance). With GCNNs, we finally revisit the topic of Geometric Deep Learning, a principled, math-driven approach to neural networks that has consistently been rising in scope and impact.

Related Articles

100 Training Courses on Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) and Machine Learning (ML) have become transformative technologies across various industries. To keep up with the fast-paced advancements in the field, professionals and enthusiasts alike seek comprehensive training courses that provide in-depth knowledge and hands-on experience. In this article, we have curated a list of 100 training courses on AI and ML, covering various topics, skill levels, and application areas. Whether you are a beginner or an experienced practitioner, these courses will help you stay at the forefront of AI and ML developments.

Interfaces for Explaining Transformer Language Models

Interfaces for exploring transformer language models by looking at input saliency and neuron activation. Explorable #1: Input saliency of a list of countries generated by a language model Tap or hover over the output tokens: Explorable #2: Neuron activation analysis reveals four groups of neurons, each is associated with generating a certain type of token Tap or hover over the sparklines on the left to isolate a certain factor: The Transformer architecture has been powering a number of the recent advances in NLP. A breakdown of this architecture is provided here . Pre-trained language models based on the architecture, in both its auto-regressive (models that use their own output as input to next time-steps and that process tokens from left-to-right, like GPT2) and denoising (models trained by corrupting/masking the input and that process tokens bidirectionally, like BERT) variants continue to push the envelope in various tasks in NLP and, more recently, in computer vision. Our understanding of why these models work so well, however, still lags behind these developments. This exposition series continues the pursuit to interpret and visualize the inner-workings of transformer-based language models. We illustrate how some key interpretability methods apply to transformer-based language models. This article focuses on auto-regressive models, but these methods are applicable to other architectures and tasks as well. This is the first article in the series. In it, we present explorables and visualizations aiding the intuition of: Input Saliency methods that score input tokens importance to generating a token. Neuron Activations and how individual and groups of model neurons spike in response to inputs and to produce outputs. The next article addresses Hidden State Evolution across the layers of the model and what it may tell us about each layer’s role.

Technology Roundtable

Technology Roundtable is an opportunity for technology architects in the technology industry to learn, innovate and collaborate with their peers. Roundtable members work together on industry priorities and general topics of interest and concern related to open source technology initiatives.

124 Artificial Intelligence and Machine Learning Technology Influencers

As of 2023, the field of Artificial Intelligence (AI) and Machine Learning (ML) has witnessed rapid growth, innovation, and adoption across various industries. Many individuals have played pivotal roles in shaping and advancing this dynamic field. These influencers have made significant contributions through their groundbreaking research, influential publications, thought leadership, and active participation in the AI/ML community. In this article, we will highlight 124 AI and ML technology influencers who have had a profound impact on the industry.